Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Formos Med Assoc ; 122(8): 714-722, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2131481

ABSTRACT

BACKGROUND: Patients recovering from COVID-19 may need vaccination against SARS-CoV-2 because acquired immunity from primary infection may wane, given the emergence of new SARS-CoV-2 variants. Understanding the trends of anti-spike IgG and neutralizing antibody titers in patients recovering from COVID-19 may inform the decision made on the appropriate interval between recovery and vaccination. METHODS: Participants aged 20 years or older and diagnosed with COVID-19 between January and December, 2020 were enrolled. Serum specimens were collected every three months from 10 days to 12 months after the onset of symptom for determinations of anti-spike IgG and neutralizing antibody titers against SARS-CoV-2 Wuhan strain with D614G mutation, alpha, gamma and delta variants. RESULTS: Of 19 participants, we found a decreasing trend of geometric mean titers of anti-spike IgG from 560.9 to 217 and 92 BAU/mL after a 4-month and a 7-month follow-up, respectively. The anti-spike IgG titers declined more quickly in the ten participants with severe or critical disease than the nine participants with only mild to moderate disease between one month and seven months after SARS-CoV-2 infection (-8.49 vs - 2.34-fold, p < 0.001). The neutralizing activity of the convalescent serum specimens collected from participants recovering from wild-type SARS-CoV-2 infection against different variants was lower, especially against the delta variants (p < 0.01 for each variant with Wuhan strain as reference). CONCLUSION: Acquired immunity from primary infection with SARS-CoV-2 waned within 4-7 months in COVID-19 patients, and neutralizing cross-activities against different SARS-CoV-2 variants were lower compared with those against wild-type strain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Immunoglobulin G , Antibodies, Viral
2.
Biol Methods Protoc ; 7(1): bpac021, 2022.
Article in English | MEDLINE | ID: covidwho-2107364

ABSTRACT

Serum samples of 20 hospitalized coronavirus disease 2019 (COVID-19) patients from Brazil who were infected by the earlier severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages B.1.1.28 and B.1.1.33, and by the variant of concern (VOC) Gamma (P.1) were tested by plaque reduction neutralization test (PRNT90) with wild isolates of a panel of SARS-CoV-2 lineages, including B.1, Zeta, N.10, and the VOCs Gamma, Alpha, and Delta that emerged in different timeframes of the pandemic. The main objective of this study was to evaluate if the serum of patients infected by earlier lineages was capable to neutralize later emerged VOCs. We also evaluated if the 4-fold difference in PRNT90 titers is a reliable seropositivity criterion to distinguish infections caused by different SARS-CoV-2 lineages. Sera collected between May 2020 and August 2021 from the day of admittance to the hospital to 21 days after diagnostic of patients infected by the two earlier lineages B.1.1.28 and B.1.1.33 presented neutralizing capacity for all challenged VOCs, including Gamma and Delta. Among all variants tested, Delta and N.10 presented the lowest geometric mean of neutralizing antibody titers, and B.1.1.7, presented the highest titers. Four patients infected with Gamma, that emerged in December 2020, presented neutralizing antibodies for B.1, B.1.1.33, and B.1.1.28, its ancestor lineage. All of them had neutralizing antibodies under the level of detection for the VOC Delta. Patients infected by B.1.1.28 presented very similar geometric mean of neutralizing antibody titers for both B.1.1.33 and B.1.1.28. Findings presented here indicate that most patients infected in early stages of COVID-19 pandemic presented neutralizing antibodies capable to neutralize wild types of all later emerged VOCs in Brazil, and that the 4-fold difference in PRNT90 titers is not reliable to distinguish humoral response among different SARS-CoV-2 lineages.

4.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1997650

ABSTRACT

Serological assays are useful in investigating the development of humoral immunity against SARS-CoV-2 in the context of epidemiological studies focusing on the spread of protective immunity. The plaque reduction neutralization test (PRNT) is the gold standard method to assess the titer of protective antibodies in serum samples. However, to provide a result, the PRNT requires several days, skilled operators, and biosafety level 3 laboratories. Therefore, alternative methods are being assessed to establish a relationship between their outcomes and PRNT results. In this work, four different immunoassays (Roche Elecsys® Anti SARS-CoV-2 S, Snibe MAGLUMI® SARS-CoV-2 S-RBD IgG, Snibe MAGLUMI® 2019-nCoV IgG, and EUROIMMUN® SARS-CoV-2 NeutraLISA assays, respectively) have been performed on individuals healed after SARS-CoV-2 infection. The correlation between each assay and the reference method has been explored through linear regression modeling, as well as through the calculation of Pearson's and Spearman's coefficients. Furthermore, the ability of serological tests to discriminate samples with high titers of neutralizing antibodies (>160) has been assessed by ROC curve analyses, Cohen's Kappa coefficient, and positive predictive agreement. The EUROIMMUN® NeutraLISA assay displayed the best correlation with PRNT results (Pearson and Spearman coefficients equal to 0.660 and 0.784, respectively), as well as the ROC curve with the highest accuracy, sensitivity, and specificity (0.857, 0.889, and 0.829, respectively).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G , Sensitivity and Specificity , Serologic Tests/methods
5.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Article in English | MEDLINE | ID: covidwho-1988056

ABSTRACT

Background: The plaque reduction neutralization test (PRNT) is the gold standard to detect the neutralizing capacity of serum antibodies. Neutralizing antibodies confer protection against further infection. The present study measured the antibody level against SARS-CoV-2 among laboratory-confirmed COVID-19 cases and evaluated whether the presence of anti-SARS-CoV-2 antibodies indicates virus neutralizing capacity. Methods: One hundred COVID-19 confirmed cases were recruited. Their sociodemographic details and history of COVID-19 vaccination, contact with positive COVID-19 cases, and symptoms were ascertained using a self-developed semi-structured interview schedule. Serum samples of the participants were collected within three months from the date of the positive report of COVID-19. The presence of anti-SARS-CoV-2 antibodies (IgA, IgG and IgM antibodies), receptor binding domain antibodies (anti-RBD), and neutralizing antibodies were measured. Findings: Almost all the participants had anti-SARS-CoV-2 antibodies (IgA, IgG and IgM) (99%) and anti-RBD IgG antibodies (97%). However, only 69% had neutralizing antibodies against SARS-CoV-2. Anti-RBD antibody levels were significantly higher among participants having neutralizing antibodies compared with those who did not. Interpretation: The present study highlights that the presence of antibodies against SARS-CoV-2, or the presence of anti-RBD antibodies does not necessarily imply the presence of neutralizing antibodies.

6.
Emerg Microbes Infect ; 11(1): 2112-2115, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1984970

ABSTRACT

After identifying a captive herd of white-tailed deer in central Texas with >94% seroprevalence with SARS-CoV-2 neutralizing antibodies in September 2021, we worked retrospectively through archived serum samples of 21 deer and detected seroconversion of all animals between December 2020 and January 2021. We then collected prospective samples to conclude that the duration of persistence of neutralizing antibodies is at least 13 months for 19 (90.5%) of the animals, with two animals converting to seronegative after six and eight months. Antibody titres generally waned over this time frame, but three deer had a temporary 4- to 8-fold increases in plaque reduction neutralization test titres over a month after seroconversion; anamnestic response cannot be ruled out.


Subject(s)
COVID-19 , Deer , Animals , Antibodies, Neutralizing , COVID-19/veterinary , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Texas/epidemiology
7.
Mol Immunol ; 147: 199-208, 2022 07.
Article in English | MEDLINE | ID: covidwho-1921264

ABSTRACT

Viral inactivation for antibody induction purposes, among other applications, should ensure biosafety, completely avoiding the risk of infectivity, and preserving viral immunogenicity. ß-propiolactone (BPL) is one of the most used reagents for viral inactivation, despite its high toxicity and recent difficulties related to importation, experienced in Brazil during the SARS-CoV-2 pandemic. In this context, the main objectives of this work were to test different inactivation procedures for SARS-CoV-2 and to evaluate the induction of neutralizing antibodies in mice immunized with antigenic preparations obtained after viral treatment with formaldehyde (FDE), glutaraldehyde (GDE), peroxide hydrogen (H2O2), as well as with viral proteins extract (VPE), in parallel with BPL. Verification of viral inactivation was performed by subsequent incubations of the inactivated virus in Vero cells, followed by cytopathic effect and lysis plaques observation, as well as by quantification of RNA load using reverse transcription-quantitative real time polymerase chain reaction. Once viral inactivation was confirmed, cell culture supernatants were concentrated and purified. In addition, an aliquot inactivated by BPL was also subjected to viral protein extraction (VPE). The different antigens were prepared using a previously developed microemulsion as adjuvant, and were administered in a four-dose immunization protocol. Antibody production was comparatively evaluated by ELISA and Plaque Reduction Neutralization Tests (PRNT). All immunogens evaluated showed some level of IgG anti-SARS-CoV-2 antibodies in the ELISA assay, with the highest levels presented by the group immunized with FDE-inactivated viral antigen. In the PRNT results, except for VPE-antigen, all other immunogens evaluated induced some level of neutralizing anti-SARS-CoV-2 antibodies, and the FDE-antigen stood out again with the most expressive values. Taken together, the present work shows that FDE can be an efficient and affordable alternative to BPL for the production of inactivated SARS-CoV-2 viral antigen.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antigens, Viral , Chlorocebus aethiops , Disease Models, Animal , Hydrogen Peroxide , Mice , Vero Cells
8.
Front Med (Lausanne) ; 9: 864972, 2022.
Article in English | MEDLINE | ID: covidwho-1862618

ABSTRACT

Introduction: Accurate and sensitive measurement of antibodies is critical to assess the prevalence of infection, especially asymptomatic infection, and to analyze the immune response to vaccination during outbreaks and pandemics. A broad variety of commercial and in-house serological assays are available to cater to different laboratory requirements; however direct comparison is necessary to understand utility. Materials and Methods: We investigate the performance of six serological methods against SARS-CoV-2 to determine the antibody profile of 250 serum samples, including 234 RT-PCR-confirmed SARS-CoV-2 cases, the majority with asymptomatic presentation (87.2%) at 1-51 days post laboratory diagnosis. First, we compare to the performance of two in-house antibody assays: (i) an in-house IgG ELISA, utilizing UV-inactivated virus, and (ii) a live-virus neutralization assay (PRNT) using the same Cambodian isolate as the ELISA. In-house assays are then compared to standardized commercial anti-SARS-CoV-2 electrochemiluminescence immunoassays (Elecsys ECLIAs, Roche Diagnostics; targeting anti-N and anti-S antibodies) along with a flow cytometry based assay (FACS) that measures IgM and IgG against spike (S) protein and a multiplex microsphere-based immunoassay (MIA) determining the antibodies against various spike and nucleoprotein (N) antigens of SARS-CoV-2 and other coronaviruses (SARS-CoV-1, MERS-CoV, hCoVs 229E, NL63, HKU1). Results: Overall, specificity of assays was 100%, except for the anti-S IgM flow cytometry based assay (96.2%), and the in-house IgG ELISA (94.2%). Sensitivity ranged from 97.3% for the anti-S ECLIA down to 76.3% for the anti-S IgG flow cytometry based assay. PRNT and in-house IgG ELISA performed similarly well when compared to the commercial ECLIA: sensitivity of ELISA and PRNT was 94.7 and 91.1%, respectively, compared to S- and N-targeting ECLIA with 97.3 and 96.8%, respectively. The MIA revealed cross-reactivity of antibodies from SARS-CoV-2-infected patients to the nucleocapsid of SARS-CoV-1, and the spike S1 domain of HKU1. Conclusion: In-house serological assays, especially ELISA and PRNT, perform similarly to commercial assays, a critical factor in pandemic response. Selection of suitable immunoassays should be made based on available resources and diagnostic needs.

9.
Viruses ; 14(3)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1715785

ABSTRACT

Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Viral , SARS-CoV-2
10.
J Clin Virol ; 146: 105060, 2022 01.
Article in English | MEDLINE | ID: covidwho-1587311

ABSTRACT

Over 90% of the COVID-19 patients manifest mild/moderate symptoms or are asymptomatic. Although comorbidities and dysregulation of immune response have been implicated in severe COVID-19, the host factors that associate with asymptomatic or mild infections have not been characterized. We have collected serial samples from 23 hospitalized COVID-19 patients with mild symptoms and measured the kinetics of SARS-CoV-2 viral load in respiratory samples and markers of inflammation in serum samples. We monitored seroconversion during the acute phase of illness and quantitated the amount of total IgG against the receptor-binding domain of SARS-CoV-2 and estimated the virus neutralization potential of these antibodies. Viral load decreased by day 8 in all the patients but the detection of viral RNA in saliva samples did not correlate well with viral RNA detection in nasopharyngeal/oropharyngeal swab samples. 25% of the virus-positive patients had no detectable neutralizing antibodies in the serum and in other cases, the efficiency of antibodies to neutralize SARS-CoV-2 B1.1.7 strain was lower as compared to the circulating virus isolate. Decrease in viral load coincided with increase in neutralizing antibodies and interferon levels in serum. Most patients showed no increase in inflammatory cytokines such as IL-1ß or IL-6, however, elevated levels of IL-7 and other inflammatory mediators such as TNF-α and IL-8 was observed. These data suggest that most mild infections are associated with absence of inflammation coupled with an active innate immune response, T-cell activation and neutralizing antibodies.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , SARS-CoV-2 , Viral Load
11.
Access Microbiol ; 3(8): 000257, 2021.
Article in English | MEDLINE | ID: covidwho-1566108

ABSTRACT

We compared neutralization assays using either the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus or surrogate neutralization markers, using characterized sera. We found the results of the neutralization assays 75 % concordant overall and 80 % concordant for samples with high antibody levels. This demonstrates that commercial surrogate SARS-CoV-2 assays offer the potential to assess anti-SARS-CoV-2 antibodies' neutralizing capacity outside CL-3 laboratory containment.

12.
Front Med (Lausanne) ; 8: 735853, 2021.
Article in English | MEDLINE | ID: covidwho-1436006

ABSTRACT

SARS-CoV-2 variants of concern show reduced neutralization by vaccine-induced and therapeutic monoclonal antibodies; therefore, treatment alternatives are needed. We tested therapeutic equine polyclonal antibodies (pAbs) that are being assessed in clinical trials in Costa Rica against five globally circulating variants of concern: alpha, beta, epsilon, gamma and delta, using plaque reduction neutralization assays. We show that equine pAbs efficiently neutralize the variants of concern, with inhibitory concentrations in the range of 0.146-1.078 µg/mL, which correspond to extremely low concentrations when compared to pAbs doses used in clinical trials. Equine pAbs are an effective, broad coverage, low-cost and a scalable COVID-19 treatment.

13.
J Clin Med ; 10(10)2021 May 14.
Article in English | MEDLINE | ID: covidwho-1234752

ABSTRACT

The plaque reduction neutralization test (PRNT) is a preferred method for the detection of functional, SARS-CoV-2 specific neutralizing antibodies from serum samples. Alternatively, surrogate enzyme-linked immunosorbent assays (ELISAs) using ACE2 as the target structure for the detection of neutralization-competent antibodies have been developed. They are capable of high throughput, have a short turnaround time, and can be performed under standard laboratory safety conditions. However, there are very limited data on their clinical performance and how they compare to the PRNT. We evaluated three surrogate immunoassays (GenScript SARS-CoV-2 Surrogate Virus Neutralization Test Kit (GenScript Biotech, Piscataway Township, NJ, USA), the TECO® SARS-CoV-2 Neutralization Antibody Assay (TECOmedical AG, Sissach, Switzerland), and the Leinco COVID-19 ImmunoRank™ Neutralization MICRO-ELISA (Leinco Technologies, Fenton, MO, USA)) and one automated quantitative SARS-CoV-2 Spike protein-based IgG antibody assay (Abbott GmbH, Wiesbaden, Germany) by testing 78 clinical samples, including several follow-up samples of six BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, NY, USA) vaccinated individuals. Using the PRNT as a reference method, the overall sensitivity of the examined assays ranged from 93.8 to 100% and specificity ranged from 73.9 to 91.3%. Weighted kappa demonstrated a substantial to almost perfect agreement. The findings of our study allow these assays to be considered when a PRNT is not available. However, the latter still should be the preferred choice. For optimal clinical performance, the cut-off value of the TECO assay should be individually adapted.

15.
Immun Inflamm Dis ; 9(2): 419-434, 2021 06.
Article in English | MEDLINE | ID: covidwho-1064363

ABSTRACT

INTRODUCTION: Infection with SARS-CoV-2 leads to a spectrum of symptoms. Understanding the basis for severity remains crucial for better management and therapy development. So far, older age, associated-comorbidities, and IL-6 have been associated with severity/mortality. MATERIALS AND METHODOLOGY: As a primary step, we analyzed the frequency and functional profile of innate immune cells (NK cells/dendritic cells/monocytes) and adaptive immunity-driving lymphocytes (B cells/T cells/follicular T helper cells) by flow cytometry. Sixty cases of SARS CoV-2 infection (25 severe, 35 mild) and ten healthy subjects without SARS CoV-2 IgG were included. Disease-duration based analysis of immune profile was explored for early events differentiating the two disease forms. Neutralizing antibody titers were determined by PRNT. RESULTS AND CONCLUSION: Disease severity was found to be associated with impaired maturation of mDCs and hyperactivation of NK, follicular T helper cells, and CD8 T cells. Lower IL-21 receptor expression on memory B cells indicated an imbalance in IL-21/IL-21 R ratio. Lower BCMA positive plasmablast cells in severe cases did suggest a probable absence of long-term humoral immunity. Multivariate analysis revealed a progressive association of PD-1+CD4 T cells with PRNT50 titers. Thus, in addition to identifying probable prognostic markers for severity, our study emphasizes the definite need for in-depth viral antigen-specific functional analyses in a larger patient cohort and with multiple sampling.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Lymphocyte Subsets/immunology , Monocytes/immunology , SARS-CoV-2 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigen Presentation , COVID-19/blood , Comorbidity , Cytokines/blood , Female , Flow Cytometry , Follow-Up Studies , Humans , India , Lymphocyte Activation , Male , Middle Aged , Prognosis , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
16.
J Med Virol ; 92(10): 2243-2247, 2020 10.
Article in English | MEDLINE | ID: covidwho-935138

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological assays are urgently needed for rapid diagnosis, contact tracing, and for epidemiological studies. So far, there is limited data on how commercially available tests perform with real patient samples, and if positive tested samples show neutralizing abilities. Focusing on IgG antibodies, we demonstrate the performance of two enzyme-linked immunosorbent assay (ELISA) assays (Euroimmun SARS-CoV-2 IgG and Vircell COVID-19 ELISA IgG) in comparison to one lateral flow assay (FaStep COVID-19 IgG/IgM Rapid Test Device) and two in-house developed assays (immunofluorescence assay [IFA] and plaque reduction neutralization test [PRNT]). We tested follow up serum/plasma samples of individuals polymerase chain reaction-diagnosed with COVID-19. Most of the SARS-CoV-2 samples were from individuals with moderate to the severe clinical course, who required an in-patient hospital stay. For all examined assays, the sensitivity ranged from 58.8 to 76.5% for the early phase of infection (days 5-9) and from 93.8% to 100% for the later period (days 10-18).


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/immunology , Adult , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/standards , Female , Fluorescent Antibody Technique, Indirect/standards , Hospitalization , Humans , Male , Middle Aged , Neutralization Tests/standards , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Severity of Illness Index , Time Factors
17.
J Virol Methods ; 286: 113979, 2020 12.
Article in English | MEDLINE | ID: covidwho-786045

ABSTRACT

Feline coronaviruses (FCoV) are members of the alphacoronavirus genus that are further characterized by serotype (types I and II) based on the antigenicity of the spike (S) protein and by pathotype based on the associated clinical conditions. Feline enteric coronaviruses (FECV) are associated with the vast majority of infections and are typically asymptomatic. Within individual animals, FECV can mutate and cause a severe and usually fatal disease called feline infectious peritonitis (FIP), the leading infectious cause of death in domestic cat populations. There are no approved antiviral drugs or recommended vaccines to treat or prevent FCoV infection. The plaque reduction neutralization test (PRNT) traditionally employed to assess immune responses and to screen therapeutic and vaccine candidates is time-consuming, low-throughput, and typically requires 2-3 days for the formation and manual counting of cytolytic plaques. Host cells are capable of carrying heavy viral burden in the absence of visible cytolytic effects, thereby reducing the sensitivity of the assay. In addition, operator-to-operator variation can generate uncertainty in the results and digital records are not automatically created. To address these challenges we developed a novel high-throughput viral microneutralization assay, with quantification of virus-infected cells performed in a plate-based image cytometer. Host cell seeding density, microplate surface coating, virus concentration and incubation time, wash buffer and fluorescent labeling were optimized. Subsequently, this FCoV viral neutralization assay was used to explore immune correlates of protection using plasma from naturally FECV-infected cats. We demonstrate that the high-throughput viral neutralization assay using the Celigo Image Cytometer provides a robust and efficient method for the rapid screening of therapeutic antibodies, antiviral compounds, and vaccines. This method can be applied to various viral infectious diseases to accelerate vaccine and antiviral drug discovery and development.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Feline/isolation & purification , High-Throughput Screening Assays/veterinary , Image Cytometry/methods , Neutralization Tests/methods , Animals , Cat Diseases/diagnosis , Cat Diseases/virology , Cats , Cell Line , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/virology , High-Throughput Screening Assays/methods , Image Cytometry/veterinary , Neutralization Tests/veterinary , Viral Load
18.
Indian J Med Res ; 152(1 & 2): 82-87, 2020.
Article in English | MEDLINE | ID: covidwho-732736

ABSTRACT

BACKGROUND & OBJECTIVES: The global pandemic caused by SARS-CoV-2 virus has challenged public health system worldwide due to the unavailability of approved preventive and therapeutic options. Identification of neutralizing antibodies (NAb) and understanding their role is important. However, the data on kinetics of NAb response among COVID-19 patients are unclear. To understand the NAb response in COVID-19 patients, we compared the findings of microneutralization test (MNT) and plaque reduction neutralization test (PRNT) for the SARS-CoV-2. Further, the kinetics of NAb response among COVID-19 patients was assessed. METHODS: A total of 343 blood samples (89 positive, 58 negative for SARS-CoV-2 and 17 cross-reactive and 179 serum from healthy individuals) were collected and tested by MNT and PRNT. SARS-CoV-2 virus was prepared by propagating the virus in Vero CCL-81 cells. The intra-class correlation was calculated to assess the correlation between MNT and PRNT. The neutralizing endpoint as the reduction in the number of plaque count by 90 per cent (PRNT90) was also calculated. RESULTS: The analysis of MNT and PRNT quantitative results indicated that the intra-class correlation was 0.520. Of the 89 confirmed COVID-19 patients, 64 (71.9%) showed NAb response. INTERPRETATION & CONCLUSIONS: The results of MNT and PRNT were specific with no cross-reactivity. In the early stages of infection, the NAb response was observed with variable antibody kinetics. The neutralization assays can be used for titration of NAb in recovered/vaccinated or infected COVID-19 patients.


Subject(s)
Antibodies, Neutralizing/isolation & purification , Coronavirus Infections/blood , Neutralization Tests , Pandemics , Pneumonia, Viral/blood , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Child , Chlorocebus aethiops/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells/immunology , Young Adult
19.
Am J Clin Pathol ; 154(3): 293-304, 2020 08 05.
Article in English | MEDLINE | ID: covidwho-614466

ABSTRACT

OBJECTIVES: To examine and summarize the current literature on serologic methods for the detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: A literature review was performed using searches in databases including PubMed, medRxiv, and bioRxiv. Thirty-two peer-reviewed papers and 23 preprints were examined. RESULTS: The studies included lateral flow immunoassay, enzyme-linked immunosorbent assay, chemiluminescence immunoassay, and neutralizing antibody assays. The use of all major SARS-CoV-2 antigens was demonstrated to have diagnostic value. Assays measuring total antibody reactivity had the highest sensitivity. In addition, all the methods provided opportunities to characterize the humoral immune response by isotype. The combined use of IgM and IgG detection resulted in a higher sensitivity than that observed when detecting either isotype alone. Although IgA was rarely studied, it was also demonstrated to be a sensitive marker of infection, and levels correlated with disease severity and neutralizing activity. CONCLUSIONS: The use of serologic testing, in conjunction with reverse transcription polymerase chain reaction testing, was demonstrated to significantly increase the sensitivity of detection of patients infected with SARS-CoV-2. There was conflicting evidence regarding whether antibody titers correlated with clinical severity. However, preliminary investigations indicated some immunoassays may be a surrogate for the prediction of neutralizing antibody titers and the selection of recovered patients for convalescent serum donation.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Antibody Formation , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , Immunoglobulin G , SARS-CoV-2
20.
J Clin Virol ; 129: 104480, 2020 08.
Article in English | MEDLINE | ID: covidwho-584207

ABSTRACT

Serological SARS-CoV-2 assays are urgently needed for diagnosis, contact tracing and for epidemiological studies. So far, there is limited data on how recently commercially available, high-throughput immunoassays, using different recombinant SARS-CoV-2 antigens, perform with clinical samples. Focusing on IgG and total antibodies, we demonstrate the performance of four automated immunoassays (Abbott Architect™ i2000 (N protein-based)), Roche cobas™ e 411 analyzer (N protein-based, not differentiating between IgA, IgM or IgG antibodies), LIAISON®XL platform (S1 and S2 protein-based), VIRCLIA® automation system (S1 and N protein-based) in comparison to two ELISA assays (Euroimmun SARS-CoV-2 IgG (S1 protein-based) and Virotech SARS-CoV-2 IgG ELISA (N protein-based)) and an in-house developed plaque reduction neutralization test (PRNT). We tested follow up serum/plasma samples of individuals PCR-diagnosed with COVID-19. When calculating the overall sensitivity, in a time frame of 49 days after first PCR-positivity, the PRNT as gold standard, showed the highest sensitivity with 93.3% followed by the dual-target assay for the VIRCLIA® automation system with 89%. The overall sensitivity in the group of N protein-based assays ranged from 66.7 to 77.8% and in the S protein-based-assays from 71.1 to 75.6%. Five follow-up samples of three individuals were only detected in either an S and/or N protein-based assay, indicating an individual different immune response to SARS-CoV-2 and the influence of the used assay in the detection of IgG antibodies. This should be further analysed. The specificity of the examined assays was ≥ 97%. However, because of the low or unknown prevalence of SARS-CoV-2, the examined assays in this study are currently primarily eligible for epidemiological investigations, as they have limited information in individual testing.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , High-Throughput Screening Assays/methods , Immunoglobulin G/blood , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Automation, Laboratory/methods , COVID-19 , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL